
Linking R and Qt: a new graphics subsystem

Deepayan Sarkar

Computational Biology
Fred Hutchinson Cancer Research Center

July 13, 2009



R Graphics

• Long history

• Widely used and tested

• Cross-platform, supports multiple output backends
(screen, PDF, SVG, pixmap, etc.)

• Grid graphics provides enormous flexibility



Drawbacks of the R graphics model

• Limited by ink-on-paper model
• Logical graphical primitives not retained at the device level
• E.g., a “+” plotting character is drawn as two line segments
• Things can be added to a plot but not deleted
• Interaction difficult

• Grid works around this by keeping track of everything it draws

• But,
• Grid is slow
• Underlying limitations of the graphics engine remain
• E.g., removing a point essentially redraws the whole graph
• Doesn’t look pretty, because grid is slow!



Qt

• Powerful “Application and UI framework” written in C++

• Widely used and tested

• Cross-platform, supports multiple output backends
(screen, PDF, SVG, pixmap, etc.)

• Qt’s Graphics View framework enables flexible graphics

“...provides a surface for managing and interacting with a large
number of custom-made 2D graphical items, and a view
widget for visualizing the items...”

• Can we use Qt to move beyond the limitations of R graphics?



Qt

• Powerful “Application and UI framework” written in C++

• Widely used and tested

• Cross-platform, supports multiple output backends
(screen, PDF, SVG, pixmap, etc.)

• Qt’s Graphics View framework enables flexible graphics

“...provides a surface for managing and interacting with a large
number of custom-made 2D graphical items, and a view
widget for visualizing the items...”

• Can we use Qt to move beyond the limitations of R graphics?



Approach 1

• Implement an R graphics device using the Graphics View
framework

• Use Qt’s capabilities to enhance functionality

• But still limited: items in the scene cannot in general be
mapped back to the data



Approach 2

• A completely independent graphics subsystem
• Not a novel idea: GGobi, iPlots

• My main interest: implement a Trellis-like system

• Interface should be similar for the end-user

• Should make interaction and dynamic manipulation easier



Why grid?

• What grid features do we really need?
• Ability to draw arbitrary things in rectangular viewports
• Ability to create a layout and put things in it
• Control over layout row and column expansion

(e.g., panels vs labels)
• Basic elements (typically text labels) should know the

minimum size needed to display themselves
• Complex elements (e.g., legends) made up of simpler elements

placed in a layout should also know their minimum size
(“frameGrob” in grid).

• All are features that a GUI toolkit excels at

• In fact, the design of grid was inspired by GUI toolkits

• So, why not just use an actual toolkit?



Why grid?

• What grid features do we really need?
• Ability to draw arbitrary things in rectangular viewports
• Ability to create a layout and put things in it
• Control over layout row and column expansion

(e.g., panels vs labels)
• Basic elements (typically text labels) should know the

minimum size needed to display themselves
• Complex elements (e.g., legends) made up of simpler elements

placed in a layout should also know their minimum size
(“frameGrob” in grid).

• All are features that a GUI toolkit excels at

• In fact, the design of grid was inspired by GUI toolkits

• So, why not just use an actual toolkit?



Mosaiq

• A high-level lattice-like package

• Implemented using the qtpaint API

• Makes extensive use of Qt layouts
(both Graphics View layouts and widget layouts)

• Opportunity to clean up API based on lessons from lattice



API highlights

• A Trellis-style graph, variables (terms) can be
• Conditioning variables: used to define subsets of data
• Panel variables: appropriate subsets used within panel display
• E.g., densityplot(~ x | a, groups = g, weights = w)
• Finer distinctions exist in the “Grammar of Graphics”

worldview, but not in the “panel function” philosophy of Trellis

• The classic Trellis formula API
• Formula defines conditioning and some panel variables
• Others specified using non-standard evaluation paradigm

• Problems:
• Limits code re-use;

special features need to be handled in each high-level function
• Difficult to write wrappers/methods;

needs match.call(), careful handling



API highlights

• A Trellis-style graph, variables (terms) can be
• Conditioning variables: used to define subsets of data
• Panel variables: appropriate subsets used within panel display
• E.g., densityplot(~ x | a, groups = g, weights = w)
• Finer distinctions exist in the “Grammar of Graphics”

worldview, but not in the “panel function” philosophy of Trellis

• The classic Trellis formula API
• Formula defines conditioning and some panel variables
• Others specified using non-standard evaluation paradigm

• Problems:
• Limits code re-use;

special features need to be handled in each high-level function
• Difficult to write wrappers/methods;

needs match.call(), careful handling



API highlights: plans

• Separate out specification of “conditioning variables” and
“panel variables”

• Packets defined solely by conditioning variables (subscripts);
the only thing that differs between panel function calls

• Panel variables represented as expressions, passed on to panel
function directly.

• Use methods to provide more familiar formula interface

• Provide more control over evaluation
• Define a new generic function

evaluate(e, data, subset, enclos)
• Dispatch (at least) on both e and data
• Supporting new data types could be as simple as writing a new

method
• Important for high-throughput Bioinformatics data with

complex structures



Still to do

• Legends: should be easy, just not done yet

• Aspect ratio: same holds

• Some clipping issues

• PDF outout: currently not vector output for complex widgets

• Mathematical annotation (plotmath): not going to happen,
but should be able to embed R graphics

• Interaction model? Will likely involve layers, but needs
thought


